Entropy-Transport distances between unbalanced metric measure spaces
نویسندگان
چکیده
Inspired by the recent theory of Entropy-Transport problems and $\mathbf{D}$-distance Sturm on normalised metric measure spaces, we define a new class complete separable distances between spaces possibly different total mass. We provide several explicit examples such distances, where prominent role is played geodesic based Hellinger-Kantorovich distance. Moreover, discuss some limiting cases theory, recovering "pure transport" introducing entropic" distances. also study in detail topology induced metrics, showing compactness stability results for satisfying Ricci curvature lower bounds synthetic sense.
منابع مشابه
Information Distances versus Entropy Metric
Information distance has become an important tool in a wide variety of applications. Various types of information distance have been made over the years. These information distance measures are different from entropy metric, as the former is based on Kolmogorov complexity and the latter on Shannon entropy. However, for any computable probability distributions, up to a constant, the expected val...
متن کاملMarked Metric Measure Spaces
A marked metric measure space (mmm-space) is a triple (X , r,μ), where (X , r) is a complete and separable metric space and μ is a probability measure on X × I for some Polish space I of possible marks. We study the space of all (equivalence classes of) marked metric measure spaces for some fixed I . It arises as a state space in the construction of Markov processes which take values in random ...
متن کاملRicci Curvature for Metric-measure Spaces via Optimal Transport
We define a notion of a measured length space X having nonnegative N -Ricci curvature, for N ∈ [1,∞), or having ∞-Ricci curvature bounded below by K, for K ∈ R. The definitions are in terms of the displacement convexity of certain functions on the associated Wasserstein metric space P2(X) of probability measures. We show that these properties are preserved under measured Gromov-Hausdorff limits...
متن کاملOptimal Transport and Ricci Curvature for Metric-measure Spaces
We survey work of Lott-Villani and Sturm on lower Ricci curvature bounds for metric-measure spaces. An intriguing question is whether one can extend notions of smooth Riemannian geometry to general metric spaces. Besides the inherent interest, such extensions sometimes allow one to prove results about smooth Riemannian manifolds, using compactness theorems. There is a good notion of a metric sp...
متن کاملNearly equal distances in metric spaces
Let (X, d) be any finite metric space with n elements. We show that there are two pairs of distinct elements in X that determine two nearly equal distances in the sense that their ratio differs from 1 by at most 9 logn n2 . This bound (apart for the multiplicative constant) is best possible and we construct a metric space that attains this bound. We discus related questions and consider in part...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Probability Theory and Related Fields
سال: 2022
ISSN: ['0178-8051', '1432-2064']
DOI: https://doi.org/10.1007/s00440-022-01159-4